EXAM 1 IS THURSDAY IN QUIZ SECTION

Allowed:

1. A Ti-30x IIS Calculator
2. An 8.5 by 11 inch sheet of handwritten notes (front/back)
3. A pencil or black/blue pen

Details and rules:

1. 4 pages of questions, 50 minutes, use your time effectively.
2. Show your work using methods from class. The correct answer with no supporting work is worth zero points. Must show full methods.

Quick Review

(13.4) Acceleration

$$
a_{T}=\frac{\overrightarrow{\boldsymbol{r}}^{\prime} \cdot \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}, a_{N}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}
$$

(14.1, 14.3, 14.4) Analyzing Surfaces

- Sketch domain, sketch level curves.
- Compute partial derivatives
- slope in x-direction, y -direction
- concavity in x-direction, y-direction
- Tangent planes/linear approx

$$
z-z_{0}=f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)
$$

$$
L(x, y)=z_{0}+f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)
$$

(14.7) Critical Points, Max/Min

- Set $f_{x}=0$ and $f_{y}=0$ combine and solve (and check).
-Classify as local max/min, or saddle $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$
i) $D>0, f_{x x}>0 \rightarrow$ local min
ii) $D>0, f_{x x}<0 \rightarrow$ local max
iii) $D<0 \quad \rightarrow$ saddle pt.
- Absolute max/min
i) Critical points inside region?
ii) Study boundaries.
$z=$ "one variable function" on each boundary
iii) Absolute max/min must occur at a critical point inside region or a boundary.
See what gives biggest z.
- Applied max/min What are you optimizing? Constraints?
Give two variable function for what you are optimizing, find critical point(s).

(15.1-4): Double Integrals

$\iint_{R} f(x, y) d A=\begin{gathered}\text { volume below } \mathrm{f}(\mathrm{x}, \mathrm{y}) \\ \text { and above } \mathrm{R}\end{gathered}$
Setting up
i) Integrand? ($\mathrm{z}=$???)
ii) Draw Region

- Draw given xy-bounds.
- Draw intersection of surfaces.
iii) Choose how to describe region
$\begin{array}{ll}\text { Top/Bottom: } & \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \\ \text { Left/Right: } & \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y\end{array}$
Polar: $\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta$

Other applications:

$$
\iint_{R} 1 d A=\text { area of } \mathrm{R}
$$

$$
\begin{gathered}
M_{y}=\iint_{R} x p(x, y) d A, \\
M_{x}=\iint_{R} y p(x, y) d A, \\
M=\iint_{R} p(x, y) d A, \\
\quad \bar{x}=\frac{M_{y}}{M}, \quad \bar{y}=\frac{M_{x}}{M}
\end{gathered}
$$

